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An integral method is used to investigate the interaction between a two- 
dimensional, single frequency finite amplitude disturbance in a laminar, in- 
compressible wake behind a flat plate at  zero incidence. The mean flow is assumed 
to be a non-parallel flow characterized by a few shape parameters. Distribution 
of the fluctuation across the wake is obtained as functions of those mean flow 
parameters by solving the inviscid Rayleigh equation using the local mean flow. 
The variations of the fluctuation amplitude and of the shape parameters for the 
mean flow are then obtained by solving a set of ordinary differential equations 
derived from the momentum and energy integral equations. The interaction be- 
tween the mean flow and the fluctuation through Reynolds stresses plays an 
important role in the present formulation, and the theoretical results show good 
agreement with the measurements of Sat0 & Kuriki (1961). 

1. Introduction 
The use of the infinitesimal disturbance theory of hydrodynamic stability for 

flowinatwo-dimensional wake has been studied by McKoen (1955), Sat0 & Kuriki 
(1961), Gold (1963) and others. The assumption of small disturbance allows the 
decoupling of the development of the disturbances from the mean flow field, 
which is independently determined from the steady laminar equations. An exact 
solution for a steady laminar two-dimensional wake was obtained by Goldstein 
(1933) with the additionalassumptionsof ahighReynoldsnumber flow. The linear 
stability theory further assumes a quasi-parallel mean flow, so that the distur- 
bance equations permit a wave-like solution. A detailed experiment for the wake 
behind a flat plate in an incompressible flow was reported by Sat0 & Kuriki 
(1961), aiming a t  clarifying the transition mechanism in a wake. Their measure- 
ments confirmed that the initial stage of the laminar-turbulent transition can be 
described by the linear stability theory. They found that, in this region, the 
predominant disturbance was two-dimensional and antisymmetric with a fre- 
quency corresponding to the one most unstable according to the linear stability 
theory. However, the agreements are limited to a relatively narrow flow region 
near the beginning of transition. This limited range of applicability is expected, 
because the exponentially growing disturbances, no matter how small their 
initial magnitude may be, will soon invalidate the assumptions pertinent to the 
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linearization. Sat0 & Kuriki also found that a fairly extensive non-linear region 
following the linear region existed in the wake. 

The following phenomena were observed in this region, and are believed to 
be consequences of the finite amplitude of the disturbances. (i) Two-dimensional 
sinusoidal fluctuations, of the same frequency as observed in the linear region, 
were still prominent. However, their growth deviated from a simple exponential 
rate; and the amplitude of the disturbance actually decreased in the later stage 
of this region. (ii) A harmonic at twice the fundamental frequency appeared with 
measurable amplitude, which was symmetric with respect to the wake axis. 
(iii) The mean flow velocity and the wake width deviated substantially from the 
undisturbed laminar wake solution. 

An early attempt, to include the effects of a finite amplitude two-dimensional 
disturbance on the stability of flows between two parallel planes, was reported 
by Meksyn & Stuart (1951). The effect of the finite amplitude disturbance was 
introduced by including the Reynolds-stress term, p U)Zlr, in the mean equation 
of motion. Only a single frequency disturbance was considered, and the genera- 
tion of the higher harmonics through the non-linear interactions between modes 
was ignored. Their method of solution was essentially an integral approach. 
The Reynolds stress was evaluated in terms of a mean flow parameter U:lU& 
under the assumption that the distribution of the disturbance was given by the 
solution of the linearized Orr-Sommerfeld equation, where U,(y) is the mean 
flow velocity and the prime denotes differentiation with respect to y. Using such 
an approach, Meksyn & Stuart estimated the effect of the finite amplitude 
disturbance on the critical Reynolds number for plane Poiseuille flow. As was to 
be expected, the results showed that the critical Reynolds number decreased as 
the amplitude of the disturbances increased. Stuart (1956) gave a more rigorous 
formulation. The method was applied t o  the non-linear instability of plane 
Couette flow by Kuwabara (1967), who used the Galerkin’s method to determine 
the mean flow and the disturbance. 

An enlarged and more general formulation along this line of approach was 
given by Stuart (1958). In this paper, he discussed extensively the role of the 
Reynolds stress in determining the stability of parallel flows and the physical 
processes associated with the non-linearity as the disturbances grow from an 
infinitesimal to a finite amplitude. A Fourier series expansion was assumed for 
the disturbance, and an assumption of constant wave velocity c, for all the 
Fourier components was implied. It in turn gave the expression for the Reynolds 
stress, which appeared in the mean equation of motion linking the mean flow 
and the disturbance. An approximate energy method was used, in which the 
dominant lion-linear interaction was assumed to be that between the mean flow 
and the fundamental component of the disturbance. The distribution of the 
disturbance was again taken from the solution of the linearized equation. The 
governing equation for the evolution of the amplitude as a function of time was 
then obtained from the integrated disturbance energy equation. This amplitude 
equation turned out to be of the same form as given without derivation by Landau 
(1944). One most important result of Stuart’s analysis is the existence of an 
equilibrium state when the non-linear effect is introduced. The same method was 
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applied to the flow in a small gap between rotating cylinders. Good agreement 
of the torque required to maintain the cylinders in motion with Taylor’s (1923) 
measurements was indicated. 

The basic ideas of the present approach have been extracted from these works. 
The important difference, however, is that the streamwise variation of the mean 
flow is considered simultaneously with the evolution of the disturbances. 

2. Formulation of the problem 

For two-dimensional flat-plate wake, let x be non-dimensional distance along 
the wake axis measured from the trailing edge, and y the non-dimensional 
distance from the wake axis. Correspondingly, u and v represent the non- 
dimensional velocity components. Here the reference quantities for the non- 
dimensionalization are chosen to be the free stream conditions and the physical 
plate length L. Then the Navier-Stokes equations in two dimensions can be 
written as: 

2.1. Governing differential equations 

(2.1) i 
ux+wpv = 0, 

ut+uux+vu, = -pz+ (1IR) (uzx+upvy), 

vt+ uvz + vvy = - Ppv + (1/R) (%z -t vyy), 

where R is the Reynolds number based on the reference quantities, i.e. R = UL/v.  
Now, the flow is divided into a mean part independent of time and a fluctuating 
part with zero mean, i.e. 

where the bar indicates a time average according to 

The fluctuations are assumed to be periodic in time with period 17, and hence 
- - -  
u.’ = v’ = p’ = 0. 

For simplicity, the time dependence of the fluctuating quantities will be assumed 
to be of the form N einwt. Here the frequency w = 2n/T is taken to be a real 
number, and n is an integer. 

Substituting (2.2) into (2.1)) and averaging over time, we obtain for the mean 
flow: 
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By subtracting (2.3) from ( 2 . 1 ) )  we obtain: 
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(2.4) 

u;+w; = 0) 

U; + 
V ;  + G w ~  + u'%, + ;Li~h + d;iY + ~2 = -ph + (1/R) (v:, + why), 

+ u ' @ ~  + ZU; + d U Y  + x1 = -1); + (1/R) (u;, + ~j , ) ,  

~ - 
where XI = u'uj, + wluj - (u'w')Y - (u'2),, 

xz  = ufw; + W f W j  - (U'Wf),- (wf2),. 
__ - 

For the wake flow behind a flat plate, except in the immediate vicinity of the 
trailing edge, the boundary layer type approximation is quite satisfactory for 
a relatively large Reynolds number. In  the experiment of Sat0 & Kuriki, the 
Reynolds numbers are of the order of lo4 and higher. We shall therefore consider 
flows of large Reynolds number, and apply the boundary layer approximation 
to the mean flow, which implies: 

(i) V / U  = O(R-8) < 1 ,  
(ii) b ,  the non-dimensional wake half-width much less than 1, 

With these approximations, if the magnitude of the fluctuation is further 
assumed to be infinitesimal, (2.3) reduces to the steady laminar wake equ a t' ions, 

( 2 . 5 )  1 
u,+v,  = 0) 

P, = 0, 

- -  
UU,+WU, = -Fx+(l /R)E, , ,  
- 

where px may be set equal to zero with the boundary condition that 23, = 0 
as y + 00. Equations (2.5) were first solved by Goldstein, who joined a far-wake 
solution to a series expansion solution for the near-wake. This solution of (2.5) 
will be referred to as the 'pure laminar wake ' solution in this paper. 

The role of the finite amplitude disturbances can be seen clearly from (2.3). 
As the amplitude grows, the Reynolds-stress terms become comparable with 
the remaining terms in the equation. The rapid change in the mean flow observed 
exfierimentally in the non-linear region indicates that the Reynolds-stress terms 
dominate. If A denotes a measure of the amplitude of the fluctuation, we will 
expect A24 R to be of the order one or higher in the non-linear region. In other 
words, when A2 becomes O(l/,/R), the effect of the disturbance on the mean 
flow can no longer be ignored. Hence, for the non-linear theory, we will keep the 
terms resulting from the fluctuating quantities without exact specification of 
their relative magnitudes as compared with the remaining terms in the mean 
flow equations. 

Eliminating the pressure term from (2.3), we obtain: 

a -  - a -  - a -  - 
- (UU, + wu,) - - (UW, + wwu) + - ((U'2)% - (w'2),) 

ax aY aY _ _ ~  

l a -  l a -  a 2  __ a 2  __ 
+- (U'd)--  (dw') = - - (uxx+UuY)--  -- ( W Z ~ + ; i Y V ) .  

aY2 ax2 R aY- R ax 
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The underlined terms in the above equation may be neglected by making the 
boundary layer approximation. Then we have 

Integrating y from the edge with the assumption of no disturbance at the edge, 
we have 

(2.7) 
1 -  - - _ _  - -  

uuz + vuy + (u‘vf)y + (u’2- v’2)z = fz uyy. 

In  principle, the complete set of the governing partial differential equations 
may be solved for any given flow conditions. However, it would be a difficult 
numerical t,ask, that would provide little understanding of the non-linear 
mechanism in the wake. Therefore, in an attempt to bring out the essential 
effects in the non-linear region, the approximate integral method is adopted for 
the present investigation. In the simplest version of the integral method, the 
flow is required to satisfy the conservation equations of mean momentum, mean 
energy and fluctuation energy in integral form. These equations then lead to 
three ordinary differential equations for three parametric functions characterizing 
the mean flow and the fluctuation. 

2.2. Integral equations 

The integral equations of the mean flow are obtained by integrating over the 
lateral co-ordinate y. The equations are then reduced t o  ordinary differential 
equations in x. They are as follows: 

Mean momentum equation 

Mean mechanical energy equation 

An additional equation for the fluctuation is provided by the energy equation 
of the fluctuation, which is obtained by multiplying the second equation of (2.4) 
by u‘, and the third one by v f ,  and adding. This equation is then integrated over IJ 
and averaged over a period T .  It yields the following: 

Mean jluctuation energy equation 

(2.10) 
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The term aV/ax may be neglected as compared with azL/ay, when using the 
boundary layer approximation for the mean flow. Furthermore, the term in- 
volving the second derivative in x represents the streamwise conduction of the 
fluctuation energy, which is neglected in accordance with the boundary layer 
approximation. 

The advantage of the integral equations is the explicit display of the energy 
exchange mechanism, because of the conservation forms. In  (2.9), the left-hand 
side terms represent the variation of the mechanical energy associated with the 
mean flow in the flow direction, while the left-hand side terms in (2.10) give the 
variation of energy associated with the fluctuations. The transfer of energy 
between the mean flow and the fluctuations is represented by the two Reynolds- 
stress terms appearing on the right-hand side of both equations, but with opposite 
sign. The remaining terms on the right-hand side of both equations represent 
the viscous dissipation effect. 

2.3. Xhape assumption for the mean flow 

It is the main implication of using an integral method approach, that the un- 
knowns may be approximated by a few shape parameters, which will in turn be 
determined by the integral equations. For the sake of simplicity, the mean 
velocity profiles are assumed to be characterized by two parameters: the mean 
velocity defect, wc(x) = 1 - G(x, 0) ,  and the wake half-width, b(x). The mean 
velocity is then given by 

(2.11) 
- 
4x9 y) = 1 -w&) U*(Y*), 

where y* = y/b(x). U*(y*) will be assumed known from the experiments, or some 
other means. This complete similarity of the mean flow is not quite valid in view 
of the experimental results of Sat0 & Kuriki, where overshoot of the mean velocity 
at  some stations was indicated. However, the profiles measured are generally 
close to a Gaussian distribution, and, therefore, (2.1 1)  is a fairly good approxima- 
tion throughout the transition region. A better approximation to the mean 
velocity can be obtained by introducing additional shape parameters, such that 

-u(xy  y ,  = U*(y*, H1(X), H2(x), . . .). 
% ( X )  

(2.12) 

These additional unknown parameters require additional governing equations, 
which may easily be obtained by using the higher moment equations. 

In  (2.8), (2.9) and (2.10), we change the independent variables from (x ,  y )  to 
(x, y*) according to the following rules: 

x = x ,  *-Y 
- b(x)' 

(2.13) 

Then, with u* = u'/wc, v* = v'/wc, and p* = p'/wE, together with (2.11), (2.8) 
and (2.9) become d 

-{bwc"P, - P2wc) - 2Wc(I1- Z,l> = 0, ( 2 . 1 4 ~ )  ax 
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-{bw~[,8z-,83~c-4wc(13-14)]} a = 4w,3--I5-4bw,2-(I3- db dwc I*) -2wz16-&p4, 2w2 

/!Il =Iom U*dy*, p, = IOrn U*2dy*, 

ax ax  ax 
(2.15) 

where 

and 

au* 2 
P 3  = IOrn u*3aY*, p4 = 1; (a?l*) ay*, 

Il = jow u92dy*, 

I, = f jorn 21*2dy*, 

l3 = gorn U * F d y * ,  

I, = sorn u*V"2ay*, 

I5 = ; ~ o r n y * ~ ( u * 2 - ~ ) d y * ,  aY 

'6 = I. aY * 

1 

m --au* 
u*2.'* ~ dy*. 

There will be an additional term of the form 

on the right-hand side of (2.15), when the expression (2.12) is used instead of 
(2.11). Without losing the main features of the present approach, we will use 
(2.11) throughout this paper. In this case the Pi's are constants. 

Equation (2.10) can be written as 

where 

I9 = Iorn (u*3 - + U*V*,) __ dy*. 

21 F L M  40 
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The viscous dissipation integral is given approximately by I8 after replacing 
the x derivatives appearing inside the last integral of (2.10) by its local values, i.e. 

with x,, being a reference station near x. It may be shown that the neglected 
terms are of the order of the square of the dimensionless fluctuation amplitude A 
(defined in § 2.4), and this approximation introduces the same order of error as 
neglecting the conduction term in (2.10). Equation ( 2 . 1 4 ~ )  can be immediately 
integrated to give: 

(2.14) 

where the integration constant has been obtained by assuming a laminar flow 
over the flat plate. It should be noted that the effect of body shape appears only 
through the drag coefficient CD. Equations (2.14), (2.15) and (2.16) provide the 
governing equations for the interaction between the mean flow and the 
fluctuations. 

2.4. Shape asstcmptions for the $actuation 

The results of Sat0 & Kuriki have demonstrated the dominancy of a single 
frequency fluctuation. Therefore, as a first-order approximation, the fluctuation 
is assumed to be represented by a single frequency disturbance, and the genera- 
tion of the higher harmonics is ignored. This assumption implies that the non- 
linear quadratic terms x1 and xz in (2.4) are neglected. The remaining equations 
are then linear in the fluctuating quantities which, when properly normalized 
by the local mean flow quantities, admit a solution of the form, 

v* = v'/w, = - i [e (x)  a*fo(y*; x) exp {i(a*x* - u*t*)} - conj], 

u* = u'/wc = e(x)  fh(y*; x) exp {i(a*x* - u*t*)} + conj, 

p* = p'/wE = e(x)po(g*; x) exp (i(a*x* - u*t*)} + conj, 

(2.17) i 
where a* = ab is the normalized complex wave-number, u* = o b ,  a local real 
angular frequency and A(x )  = e(x) exp - (a:%*) measures the amplitude of the 
disturbance. The star indicates local variables. 

Upon substituting expression (2.17) into (2.4), and neglecting all the non- 
local terms (e.g. aZ/ax), we obtain an equation for the distribution function 
f,(y*). To further simplify the numerical analysis, we observe that a wake is 
dynamically unstable, and the viscous terms may be ignored for large R, except 
for a few occasions in which the viscous terms are needed to smooth out singu- 
larity. Therefore, using the expression (2.11) for the mean flow, we obtain the 
Rayleigh equation for fo, 

(2.18) 

where 
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The linear stability theory has indicated that an antisymmetric fluctuation is 
more unstable than a symmetric one as confirmed by the appearance of an anti- 
symmetric disturbance in the experiment of Sat0 & Kuriki. Thus, the fluctuation 
is assumed to be antisymmetric, which satisfies the homogeneous boundary 
conditions, 

(2.18a) 

Equation (2.18), together with the boundary condition (2.18a), constitutes an 
eigenvalue problem. For given wc, (2.18) can be solved numerically to obtain the 
eigenvalue and the corresponding eigenfunction fo(y*). In  general, for a given 
U*(y*), we have 

a* = a*(w,,w*), 1 
(2.19) 

to = ~O(Y*; we, w * ) ,  J 
which indicate the functional dependence of the eigenvalue and the eigenfunction. 
Here we consider the spatial mode of linear stability theory, i.e. the disturbance 
grows or decays spatially, depending on the sign of the imaginary part of a". 

The use of a Rayleigh equation with the local mean-velocity profile, to obtain 
the distributions of the fluctuating components across the wake, may seem t o  
be quite arbitrary without a more rigorous analysis. At the moment, we will 
just note that this is merely a method of generating the fluctuation profiles, in 
order to evaluate the required integrals as functions of the mean flow parameters 
and the amplitude. The integral method does not restrict the means of obtaining 
the distributions, as long as they are good representations of the true ones. 
However, the use of the Rayleigh equation at least guarantees the validity in the 
limit of very small amplitude. 

It should be noted that the formulation so far has reduced the integrals I, to 
a two-parameter representation aside from the direct dependence on the ampli- 
tude A .  Further approximation will now be made to simplify the analysis. We 
observe that, in general, the fluctuation components are much smaller than the 
mean-flow component and, since both Il and I2 are positive and of the same 
order, the contributions from the fluctuations in (2.14) may be ignored as a 
first approximation. This reduces (2.14) to 

(2.20) 

Then w* becomes a function of we, and the integrals are simplified to be functions 
of a single parameter w,, when the physical angular frequency and the free stream 
Reynolds number are given. Of course, the validity of this assumption will 
have t o  be examined a posteriori. Thus, the integrals can be written in the form, 

4 = Uwc) (2.21) 

for i = 1 ,2 ,  ..., 8. When only the fundamental mode is included, the triple 
correlations vanish, and hence 1, becomes zero. 

21-2 
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Using (2.20), (2.15) and (2.16) can be written as two first-order ordinarydiffer- 
ential equations for wc and I AI2, which may be solved as an initial value problem. 
The exact definition of A will now be given by setting 

kl+k2 “fp+ 1ct*121f012]dy* = 1. (2.22) 

This definition is appropriate, since it identifies I A 12 as the averaged energy of the 
fluctuating components normalized by the local mean velocity defect. 

2.5. Physical mechanisms of energy balance 

In  order to bring out the physical mechanisms of the non-linear interaction be- 
tween the mean flow and the fluctuation, we need consider only the leading 
terms in the basic equations. In  3 3 these qualitative considerations are supple- 
mented by numerical calculations using the full equations. 

The integrated momentum equation (2.14), to the leading order, gives simply 

bw, g ylR-Q, (2.23) 

where y1 is a known constant of order one. The energy integral equations of the 
mean flow and the fluctuation to the first order, may be written as 

and N I8 w,” 
ax Rb 

(2.24) 

(2.25) 

correspondingly. Here Em denotes the integral energy of the mean flow. For 
small we, since bw, is nearly constant according to (2.23), Em is linearly propor- 
tional to w, to the first order. EF is the total integrated fluctuation energy given by 

The first terms on the right-hand side of (2.24) and (2.25) are the same, but 
with an opposite sign. These terms represent an energy transfer between the 
mean flow and the fluctuations due to the Reynolds stress. For a locally amplified 
disturbance, the sign of I6 is always positive. Therefore, the energy is transferred 
from the mean flow to the fluctuation through the Reynolds stress. The remaining 
terms on the right-hand side of both equations represent the effect of viscous 
dissipation. 

Because of the growth of the wake, it is more interesting to examine the velocity 
defect w, and the total energy density of the fluctuation ET defined by 

Then, from (2.21), (2.24) and (2.25), we obtain: 

(2.26) 

(2.27) 
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where yz  is a known constant of order one, which accounts for the proportionality 
between w, and Em. 

A qualitative behaviour of the flow field in the non-linear region may be 
obtained from these two equations. When the amplitude of the fluctuation is 
small, the first term on the right-hand side of (2.27) is negligible as compared with 
the laminar viscous dissipation term, and the mean flow is closely approximated 
by the steady laminar solution, in which w, decreases as x-S. Since w, changes 
slowly in this region, the right-hand side of (2.28) is approximately constant. 
Then, the exponential growth rate of the linear stability theory immediately 
follows. This region corresponds to the linear region observed by Sato & Kuriki. 

As the amplitude grows, the Reynolds stress term becomes comparable with 
the viscous term in (2.27), and the mean velocity defect starts deviating from the 
steady laminar solution. As the fluctuation is further amplified, the Reynolds 
stress term becomes dominating. The experimentally observed rapid change of 
the mean velocity and the wake width in the non-linear region may be understood 
from this consideration. From the solution of the Rayleigh equation we learn that 
the local amplification rate decreases as w, decreases, if a single fixed frequency 
fluctuation is followed. Hence, when the fluctuation corresponding to the most 
unstable frequency in the linear region is taken to represent the fluctuating com- 
ponent, it will approach neutral as w, decreases. Thus, when w, decreases to the 
value where k6 becomes small, the mean flow is expected to have a relatively 
slow variation, as observed experimentally. 

The qualitative behaviour of the fluctuation in the non-linear region may be 
deduced from (2.28). For k, p R-9, the first term dominates. The appearance of 
the ET term with a negative sign on the right-hand side of (2.28) is the most 
interesting feature caused by the growth of the wake. It permits not only a state 
where dETldx = 0, but also a decreasing ET with x even when the fluctuation 
under consideration is still amplifying according to the local linear theory 
(k6 > 0). Experimentally, the maximum amplitude of the fundamental mode 
grows initially, but decreases after reaching a peak value. The solution of our 
model equation exhibits the same behaviour, since the energy density ET is 
expected to be indicative of the magnitude of the fluctuation. 

The crucial differences of the present problem from the parallel flow analysis 
of Stuart (1960) and Watson (1960, 1962) become evident from the above dis- 
cussions. The main result of the non-linear analysis of Stuart and Watson is the 
governing equation for the amplitude of the disturbances, which is of the form 

(2.29) 

where ?in's are constants. The coefficient li0 is given by the linear theory 
with undisturbed laminar mean flow, and li, is a result of three effects: the 
generation of the second harmonic, the correction of the fundamental and 
the correction to the laminar mean flow. The amplitude IAl in the Stuart- 
Watson theory corresponds to the average energy density ET defined by (2.26). 
Then, an analogous equation of the form of (2.29) results, with /A12 replaced by 
ET. However, the coefficients li0 and li, are no longer constants but functions 
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of x through the variation of the mean flow. Since the mean flow is not expanded 
as the undisturbed laminar flow plus a correction in the present problem, but is 
lumped together to be determined by the integral equations, the so-called 
second Landau constant a, does have an appreciable magnitude, even when the 
second harmonic is ignored. The sign of GG,, is opposite to that of Z0. I n  the case of 
a parallel flow, a supercritical equilibrium state may exist, However, the 
continued variation of the mean flow provides the possibility of a decreasing 
magnitude of the fluctuations before reaching the final equilibrium state, as 
demonstrated previously. 

3. Results and discussion 
For the purpose of comparison with the experimental results of Sato & Kuriki, 

the numerical calculations have been performed corresponding closely to the 
experimental conditions. In the calculation, the mean velocity lis'(y*) is that 
used by Sato & Kuriki in the linear region, i.e. 

U*(y*) = exp ( -  0 . 6 9 3 1 5 ~ ~ " ~ ) .  (3.1) 

Equation (3.1) also gives the exact definition of the half-wake width b as the 
distance from the wake axis to t,he half velocity defect point, where U* = 0.5. 
In  the calculation, too, the frequency of the fundamental mode taken is that in 
the experiment of Sato & Kuriki, 730 c/s a t  R = 2 x 105. This frequency was found 
to be the one receiving nearly maximum amplification rate in the linear region 
given by the temporal mode calculation of Sato & Kuriki. 

With the frequency fixed a t  this value, the variation of the local amplification 
rate was determined as a function of the mean velocity defect w, by solving the 
Rayleigh equation as formulated in (2.4). The result shows that the amplification 
rahe decreases as w, decreases. At to, FZ 0-147, a: = 0; the given frequency corre- 
sponds to a neutrally stable solution according to the linear stability theory. 
Purther decrease of the mean flow parameter w, will make this frequency a 
damped disturbance (a: > 0 ) ,  according to the linear theory. 

The integrals 7ci as functions of w, were then computed from the eigensolutions 
of the Rayleigh equation. After this preparatory computation, the integral 
conservation equations (2.14), (2.15) and (2.16) were integrated for each given 
set of initial conditions to determine the simultaneous evolutions of the mean 
flow and the fluctuation. 

3.1. Comparison with the experiment 

Most of the experimental results presented by Sato & Kuriki were obtained with 
a free-stream velocity U = 10 m/sec and a plate length L = 30 cm. These con- 
ditions correspond to a free-stream Reynolds number of 2 x lo5. From the experi- 
mental evidences, the wake was steady and laminar for a short distance from the 
trailing edge of the plate. The calculations are therefore started a t  an initial 
station x = c0 = 0-05 using the appropriate initial conditions. The centre-line 
velocity defect wc0 at  co can be taken from either the exact solution of Goldstein 
or the integral solution of an undisturbed laminar wake in the present formula- 
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tion. The latter is not very accurate there, since the velocity distribution deviates 
from the Gaussian as co decreases. For the present purposes of comparison, it was 
decided to use wco = 0.7 at co = 0.05 from the exact solution of Goldstein, because 
of the closer agreement with the experiment at that point. Another initial para- 
meter is the initial integrated energy content in the u' component, i.e. 

0.1 

5 0.6 

d 
-0 

4 0.5 
h 

3 0.4 * 
Q 
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5 0.3 

+ .* 
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where the subscript 0 refers to value at co. The value of this parameter depends 
on the different flow conditions encountered in each experiment, e.g. the free 
stream turbulence intensity level, the physical dimension of the plate trailing 
edge, etc. In  the present study these two initial parameters were chosen somewhat 
arbitrarily in performing the following calculations. The effects of each of the 
initial parameters on the complete solutions will be investigated later. 
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Figure 1 shows a comparison of the measured centre-line velocity defect we 
with the present calculation. The value of E,, was taken as 1 x in the 
calculation. The result is quite satisfactory, and seems to provide the explanation 
for the rapid deviation from the pure laminar wake solution of Goldstein, which 
is also shown on the same figure for comparison. 

Only the results for x < 0.5 are presented, because the three-dimensional effects 
observed experimentally at  larger x are not included in the present formulation. 
Theoretical calculation for x > 0.5 stays practically unchanged near the value of 
w, = 0-148. It is also interesting to note that this asymptotic value of we corre- 
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sponds closely to the value where a' = 0. At this value a balance exists between 
various mechanisms responsible for changing the mean flow. We may note that, 
although it may be somewhat fortuitous, the measured w, in all the tests has never 
become smaller than this value before the turbulent region. 

Figure 2 shows the comparison of the measured wake half-width with the one 
calculated by using (2.20). The general trend is still satisfactory, but not as good 
as w,. This disagreement seems to suggest that the approximation used in leading 
to (2.20) may not be appropriate, if a better calculation is required. In  such cases, 
the exact relation (2.14) has to be used, which includes the contributions from 
the fluctuation in the momentum integral. An attempt to include this effect 
will be discussed in $3.5.  Also shown on the same plot is the growth of the un- 
disturbed laminar wake. The strong interaction effect induced by the Reynolds 
stresses is evident from this comparison, where the wake width has increased 
by more than ti factor of two. 
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FIGURE 2.  Comparison of the wake half-width b (defined as the distance from the axis 
to the half velocity defect point non-dimensionalized by the plate length) R = 2 x lo5, 
w,, = 0.7, E,, = 1 x 0 ,  measurements of Sat0 & Kuriki. 

Figure 3 gives the theoretically calculated variation of the integrated fluctua- 
tion energy, 

Since the absolute value of the magnitude of the fluctuating components was not 
reported by Sato & Kuriki, a direct comparison with the experiment is not 
possible. However, the variation of the maximum of ($)*, given by Sato & 
Kuriki on an arbitrary scale, shows the similar relative development of the 
fluctuation. Experimentally, the magnitude of the fundamental mode grows 
initially according to the exponential law of the linear stability theory, but it 



Stability of a wake behind a flat plate 329 

0 0.1 0.2 0.3 0-4 0.5 

X 

FIGURE 3. Calculated variation of the integrated fluctuation energy density in the 

u'component E,, where E, = low zd.a dy. R = 2 x lo5, w,, = 0.7, EUo = 1 x loe5. 
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FIGURE 4. Calculated variation of the total integrated fluctuation energy Ep, 

where EF = [ (u'z+fi  dy. R = 2 x lo5, w,, = 0-7 ,  E,, = 1 x 

soon reaches a maximum and then decreases. This behaviour, which cannot be 
explained by the linear stability theory alone, is in agreement with the present 
calculation, However, it  should be pointed out that the rapid decrease of E, does 
not imply the similar decrease of the total fluctuation energy. This is seen in 
figure 4 where the total integrated fluctuation energy EF is plotted. The variation 
of EF is related to the local amplification rate a:, given by the linear theory, with 
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some correction due to the variation of the mean flow. The rate of change of the 
total energy starts out in the linear region with a nearly maximum exponential 
growth, and decreases as it moves downstream. The total energy reaches an 
equilibrium value somewhere near a: = 0,  when the mean flow ceases to vary, 
and then slowly decays because of the viscous dissipating effect. Because of the 
growth of the wake, a more appropriate measure of the magnitude of the dis- 
turbance is the total energy density ET defined by E, = E,/b. The variation of 
ET is shown in figure 5. The reason for the relatively much slower variation of 
the total fluctuating energy density ET, as compared with the sharp decrease in 
E, (figure 3), is shown in figure 6, where the ratio of the integrated energy content 
in uf to that in vf ,  
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FIGURE 5.  Calculated variation of the total integrated fluctuation energy density E,, 

whcre E ,  = 5 soom (zC'2+2)/2) dy. R = 2 x lo5, w,,, = 0.7, Euo = 1 x 

is plotted against w,. The ratio varies by more than a factor of six for the range 
of w, encountered here. Therefore, we conclude that the redistribution of the 
fluctuating energy between the two components uf and v', together with the 
change of mean flow, is responsible for the experimentally observed abnormal 
phenomena. 

The non-dimensional wave propagation velocity, taken as the real part of 
c* = @*/a*, measured by Sat0 & Kuriki, can also be obtained from the present 
calculation and the comparison is shown in figure 7. In  view of the scatter of the 
experimental data, the agreement shown is acceptable. The variation of the 
wave speed is again a consequence of the changing mean flow. 
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FIGURE 6. Relative energy content in the u' and v' components as functions 
of u',. Frequency of the fluctuation = 730 cps a t  R = 2 x lo5. 
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FIGURE 7. Comparison of the non-dimensional wave propagation velocity c: = (o*/cc*), 
a t  R = 2 x lo5. 0,  measurements of Sat0 & Kuriki. -, present calculation. 

3.2. Effects of the initial values 

Although no special attempt has been made in obtaining the theoretical curves 
discussed in this section to match the experimental data, the arbitrariness in 
the set of initial values warrants an investigation of their effects. We will study 
the effects of the two initial values, w,, and Euo, separately in the following. 
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(i) Eflects of w,,. Three cases of variation of w, corresponding to the initial 
values of wco being 0-7, 0.675 and 0-6386, are shown in figure 8. The value 
w,, = 0.6386 corresponds to the steady laminar wake solution at  <, = 0.05 
obtained by setting the fluctuation amplitude equal to zero andintegrating (2.15) 
backward from a far wake solution. The same value of E,, was used for all three 
curves, which give qualitatively the same variation of w,, and asymptote to the 
same value of w,. The decrease in wco results in the decrease in the maximum 
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FIGURE 8. Effect of wc0 on the variation of w, at R = 2 x lo5 and E,, = 1 x -, 
wco = 0.7. ---, wco = 0.675. -.-, wc0 = 0.6386. 0 ,  experiment of Sato & Kuriki. 

value of dw,ldx, and in the delay of the onset of non-linear effect, A few experi- 
mental data points are also shown there for comparison. It shows that the experi- 
mental data agree better with the result of smaller wco in the region downstream 
of the maximum slope, but a closer agreement is seen with the larger wco case 
for the upstream portion. Figure 9 gives the variations of the integrated fluctua- 
tion energy for the three cases. The general variation is again qualitatively un- 
changed, except for the different locations and levels of the maximum value 
reached. These differences result from the fact that a higher w,, implies a thinner 
wake, and therefore a higher amplification rate locally. 

(ii) Ejfects of Euo. In  order to investigate the effect of E,, on the solutions, a few 
cases were calculated for R = 2 x lo5 with the same value of wco but different 
E,,. Figure 10 shows the variations of w, for three initial values E,, = 0.1, 1.0, 
3.0 x The shape of the curves remains practically unchanged. Changing the 
initial value of E,, amounts only to a shift of the curve. It is expected from the 
previous discussions of the physical mechanisms that the magnitude of the 
disturbance required to cause a sensible deviation of the solution from the un- 
disturbed case is approximately the same over a range of w, where the laminar 



Stability of a wake behind aJEat plate 

0.7 

0.6 

0.5 

4 0.4 

0.3 

0.2 

333 

- 

0.01 

-.-.-.-.- .-.- .-. - 
' I I ' ' I "  ' v 

0 0.1 0.2 0.3 0.4 0.5 0 

X 

FIGURE 9. Effect of wco on the variation of E, at R = 2 x lo5 and E,,, = 1 X loT5. 
- 0.7. ---, w,O = 0.675. ---, Wco = 0.6386. -9 w c o  - 
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FIGURE 10. Effect of Euo on the variation of w, at R = 2 x lo5 and wco = 0.7. -.-, 
zcuo = 3 x 10-5. - , Euo = 1xlOW. ---, E,, = 1 ~ 1 0 - ~ .  ---, pure laminar wake 
(EUo --f 0). 0,  measurements of Sat0 & Kuriki for a sharp trailing edge model. A, measure- 
ments of Sat0 & Kuriki for a blunt trailing edge model. 

viscous term is of the same order. Therefore, a smaller initial magnitude of the 
disturbance will cause the mean flow to follow the laminar solution for a longer 
distance before the exponentially amplifying disturbance reaches the significant 
magnitude. This is further illustrated by the variations of the integrated fluctua- 
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tion energy E,, shown in figure 11. The shapes are again similar with merely 
a shift in abscissa. It should be noted that, with the variation of a factor 30 in 
E,,, the maximum values of E, are nearly the same and the difference in the 
'equilibrium' magnitude is negligible. The slight difference in the peak values of 
E, is caused by the slight change in the magnitude of the laminar viscous term 
when the interaction becomes important. In  principle, if the initial magnitude 
of the fluctuation is small enough, the solution approaches the steady laminar 
wake solution corresponding to E,, E 0, which is also shown in figure 10 for 
comparison. 
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I R \ \\ 
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FIGURE 11. Effect of E,, on the variation of E, at  R = 2 x lo5 and wc0 = 0.7. 
, E,, = 3 x 10-5. -, E,, = 1 x lo-'. ---, E,, = 1 X 

The magnitude of the disturbances existing at  the initial stage of the wake 
depends on many factors which vary from experiment to experiment. These 
factors include both controllable, e.g. an artificial source of disturbance, and 
partially controllable, e.g. roughness of the plate, wind tunnel noise level, etc. 
(If any quantitative calculations are needed, it will be necessary to have some 
measure of the magnitude of Eu0.) This fact is demonstrated by the two sets 
of experimental data also shown on figure 10. The data points correspond to two 
different models tested under the same free stream conditions. Model I has a 
sharp trailing edge, but model I1 has a blunt one. As expected, a larger E,, will 
be associated with model 11, which shows the right trend as indicated by the 
calculations. 

3.3. Effect of Reynolds number 
Since the inviscid Rayleigh equation has been used to obtain the local solutions 
for the fluctuation, the integrals, ki are universal functions of w, for all Reynolds 
number. This may seen be from (2.19), where the eigenvalue and the correspond- 
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ing eigenfunction are indicated to be functions of wc and w*. The non-dimensional 
frequency w* is related to the physical angular frequency by 

w* = wb = (bL/U)  x (physical frequency). (3.3) 

It was found experimentally by Sat0 & Kuriki that the physical frequency of 
the most unstable sinusoidal fluctuation observed in the linear region of the wake 
follows a 8 power law as the Reynolds number varies. Furthermore, the half- 
width b is clearly seen from (2.14) to be varying with the drag coefficient, which 
is proportional to R-B. Therefore, if we chose to follow the most unstable 
frequency at  various free stream Reynolds numbers, the value of u* is a constant 
which is independent of R. Thus, the same functional relations 7c$(wc) may be 
used for different Reynolds numbers that greatly simplify the investigation of 
the effects of Reynolds number. 
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F I G U ~  12. Reynolds number effect on the variation of w,. wc0 = 0.7, E,, = 1 x for 
all calculations. The numbers on each curve denote the Reynolds number R = UL/v.  
0 ,  measurements of Sato I% Kuriki at R = 2 x  lo5. A,  measurements of Sat0 & Kuriki 
at R = 1 x lo5. 

Figure 12 shows the variations of wc for four values of Reynolds numbers. The 
same set of initial values, wco = 0-7 and E,, = 1 x has been used in obtaining 
the solutions, in order to isolate the effects of Reynolds number. The effect on 
the solution is somewhat similar to the effect of changing the initial magnitude of 
the fluctuation Buo. In  fact, it may be seen from (2.27) that the ratio of the 
Reynolds stresses term to the laminar viscous term is of the order IAI2,/R. 
Hence, the effect of R on the beginning of transition is similar to  the effect of 
Buo. However, the effect of R differs through its persist ientnfluence over the whole 
non-linear region other than a mere shift of the abscissa. When the Reynolds 
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number decreases, the viscous damping term becomes more important in the 
non-linear region, therefore the overall transition becomes smoother. 

Also shown in figure 12 are two sets of experimental data of Sato & Kuriki 
at R = 2 x 105, 1 x lo5 correspondingly. The agreement in the trend, and even 
the quantitative effect, are fairly good considering that, if E,, = 1 x 10-5 were 
correct for the case of R = 2 x 105, the same value of E,, might have been too 
large for the smaller Reynolds number case, due t o  a relatively lower tunnel 
noise level. 

Because of the persistent influence of the Reynolds number on the interaction, 
its effect on the fluctuation energy is more pronounced than the effect of EM. 
The result is shown in figure 13, where it may also be noted that the final equi- 
librium amplitudes reached are different, because of the effect of Reynolds 
number appearing through the viscous dissipating term in (2.16). This result is 
also different from the effect of Euo, which leaves the final equilibrium amplitude 
of the fluctuation practically unchanged. 
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FIGURE 13. Reynolds number effect on the variation of E,. wc0 = 0.7, EuO = 1 x 
for all calculations. The numbers on each curve denote the Reynolds number R. 

3.4. EJffect of the viscous dissipation of the fluctuation 
The effect of the viscous dissipation of the fluctuation on the development of 
the disturbances was studied simply by setting 1, = 0. Comparison is made in 
figures 14 and 15 for the case of R = 2 x lo5. With identical initial conditions, 
figure 14 shows that the effect of the viscous term in the fluctuation energy equa- 
tion on the mean flow is quite small as one would expect. Figure 15 shows that, 
if the viscous dissipation term is absent, a final equilibrium amplitude (namely, 
another laminar oscillatory flow) is reached. However, because of the effect of 
the viscous dissipation, this equilibrium condition cannot maintain itself, and 
the amplitude decays slowly as it proceeds further downstream, to account for 
the energy loss. 
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FIGURE 14. Effect of the viscous dissipation term T,, due to tho fluctuation on the variation 
of w,. R = z x  105, E,, = 1 x 10-5, wCa = 0.7. __ , non-zero viscous dissipation. - -, 
zero viscous dissipation. 
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FIGURE 15. Effect of the viscous dissipation term T,, due to the fluctuation on the 
variation of E,. R = 2 x lo5, Euo = 1 x wCa = 0.7. -, non-zero viscous dissipation. 
-~ , zero viscous dissipation. 
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FIGURE 1G. Effect of decoupling b from w, on the variation of w,. R = 2 x lo5, 
E,,, = 1 x 10-5, wc0 = 0.7.  __ , b = b(w,). --, b = b(wo, IA1'). 
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FIGURE 17. Effect of decoupling b from w, on the variation of E,. 11 = 2 x lo5, 
Euo = 1 x 10-5, ZUco = 0.7. ~ , b = b(W,), --, b = b(w,, lala). 

3.5. Eflect of coupling b to w, 
The assumption of neglecting the contribution from the fluctuating components 
in the integrated momentum equation, which leads t o  a simple relation (2.20) 
between b and w,, is now examined. From the calculated results, it is found that 
the terms, which have been neglected to arrive at  the expression ( 2 . 2 0 ) ,  are indeed 
small compared to the remaining terms in the initial stage, but increase to about 
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20 yo of the sum of the remaining terms when the amplitude of the fluctuation 
reaches a maximum. It is therefore desirable to  investigate the effect of using 
the full integral momentum equation. 

An exact formulation will require the computation of the integrals ki as 
functions of two parameters, b and w,, since w* = wb. To simplify the analysis, 
we assume that the integrals may still be taken as functions of wc only, but the 
integral momentum (2.14) is used instead of the approximated (2 .20) .  Then, the 
wake half-width b is a function of w,, as well as the amplitude of the fluctuation. 
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FIGURE 18. Comparison of the non-dimensional wake half-width b at R = 2 x lo5. 
E,,, = 1 x 10-5, Wcn = 0.7.  - , b = b(w,). --, b = b(wo (A12). 0 ,  measurements of 
Sat0 & Kuriki. --.-, pure laminar wake. 

The results of such an integration are shown in figures 16-18 for the case of 
R = 2 x lo5.  It is clear that the effect on the mean flow velocity variation is 
quite small. Since a relatively thinner wake is obtained when b is decoupled from 
w,, it affects the variation of the fluctuation energy and the final level approached. 
The variation of wake half-width b for the two cases is shown in figure 18, 
together with the measured results of Sato & Kuriki. The decoupled result agrees 
better with the measurements, especially in the ‘equilibrium ’ wake width. 

4. Concluding remarks 
Based on the comparison of the numerical calculations with the experimental 

data, the present approach brings out the essential features of the non-linear 
interaction mechanisms in a laminar wake. The theory shows that the relatively 
rapid deviation of the mean flow velocity along the wake axis from the prediction 
for a steady laminar wake, and the rapid growth of the wake width observed 
experimentally in the transition region, are the consequences of the non-linear 
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effects induced by the finite amplitude disturbances. The streamwise variation 
of the magnitude of the fluctuation is in favourable agreement with the relative 
development observed experimentally. The decrease in magnitude of the 
fluctuation in the latter stage of the non-linear region, which is abnormal in 
view of the linear stability theory, i s  found to be a consequence ofthe wake growth. 

Although the present study of the interaction of a single frequency fluctuation 
with the mean flow through the Reynolds stresses provides a result that is con- 
sistent with most of the observed phenomena in the experiment of Sato & 
Kuriki, another important aspect of the non-linear mechanism, which resulted 
from the quadratic terms x1 and xz in the fluctuation equations (2.4), may not be 
completely ignored. These terms are responsible for the generation of the higher 
harmonics and the modification of the lower ones. The appearance of the second 
harmonic, and the rather drastic variation of the distributions of the magnitude 
and phase of the fundamental mode in the non-linear region of the experiments 
of Sato & Kuriki, calls for the inclusion of such effects. (This wilI be reported in 
a forthcoming paper.) 

In the spirit of an integral approach, the detail distribution of the fluctuation 
should not be of much concern to the assessment of the results. However, any 
drastic deviation from the assumed profile shape should a t  least lead to more 
caution in the interpretation of outcomes. The agreement of the measured distri- 
bution in the linear region with the solution of the inviscid Rayleigh equation 
has been well demonstrated by the temporal mode calculation of Sato & Kuriki. 
The same degree of agreement is shown by the present spatial mode calculation. 
However, the measured distributions for x > 0.2 deviate substantially from the 
linear profiles. Inclusion of the second harmonic, and modification of the funda- 
mental mode using the quasi-parallel mean flow, did not resolve this difficulty. 
It is our conjecture that the deviations in the distribution result, in a large part, 
from the quasi-parallel flow assumption, which becomes increasingly inadequate 
in the downstream direction. 

Finally, the integral method of solution suggested in this paper provides a 
means for extending and applying the classical hydrodynamic stability to a real 
problem. A similar procedure can be applied to flows of inviscid nature and 
governed by two-dimensional disturbances. 

This work was carried out under the sponsorship and with the financial 
support of the U.S. Army Research Office and the Advanced Research Projects 
Agcncy under Contract DA-31-124-ARO(D)-33, part of Project DEFENDER 
sponsored by t h e  Advanced Research Projects Agency. 
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